The thrombopoietin receptor P106L mutation functionally separates receptor signaling activity from thrombopoietin homeostasis.
نویسندگان
چکیده
The interaction between thrombopoietin (THPO) and its receptor c-Mpl regulates downstream cytokine signaling and platelet homeostasis. Hereditary mutations of c-Mpl can either result in loss-of-function and thrombocytopenia or in gain-of-function and thrombocythemia (HT), and are important models to analyze the mechanism of c-Mpl activity. We have analyzed the effect of the c-Mpl P106L gain-of-function and the nearby loss-of-function R102P and F104S mutations, which cause HT or thrombocytopenia, respectively, on posttranslational processing, intracellular trafficking, cell surface expression, and cell proliferation. In contrast to R102P and F104S, the P106L mutant confers cytokine-independent growth and stimulates downstream signaling after THPO treatment in Ba/F3 cells. Despite their opposite function, R102P and P106L, both lead to abnormal subcellular receptor distribution, lack of membrane localization, impaired glycosylation, and elevated THPO serum levels in effected patients. These findings indicate that the activation of downstream signaling by c-Mpl P106L does not require correct processing, trafficking, and cell surface expression of c-Mpl, whereas the negative feedback loop controlling THPO serum levels requires cell surface expression of the receptor. Thus, we propose that the P106L mutation functionally separates the activity of c-Mpl in downstream signaling from that in maintaining platelet homeostasis.
منابع مشابه
Running title: c-Mpl P106L receptor processing and activation Category: Platelets and thrombopoiesis The thrombopoietin receptor P106L mutation functionally separates receptor signaling activity from thrombopoietin homeostasis
The interaction between thrombopoietin (THPO) and its receptor c-Mpl regulates downstream cytokine signaling and platelet homeostasis. Hereditary mutations of c-Mpl can either result in loss-of-function and thrombocytopenia or in gain-of-function and thrombocythemia and are important models to analyze the mechanism of c-Mpl activity. We have analyzed the effect of the c-Mpl P106L gain-of-functi...
متن کاملOptimized Cytoplasmic Expression of Water Soluble Human Thrombopoietin in Modified Bacterial Strain
Background: Thrombopoietin is a glycoprotein produced by liver and kidney which is responsible for regulating the platelet production. Thrombopoietin is a key ligand with impact on regulating the self-renewal of Hematopoietic stem cells and the regulation of Megakaryocytes progenitors. Previous studies have indicated that only N-terminal domain of this protein has receptor promoting ability. Th...
متن کاملGenetic Alterations of the Thrombopoietin/MPL/JAK2 Axis Impacting Megakaryopoiesis
Megakaryopoiesis is an original and complex cell process which leads to the formation of platelets. The homeostatic production of platelets is mainly regulated and controlled by thrombopoietin (TPO) and the TPO receptor (MPL)/JAK2 axis. Therefore, any hereditary or acquired abnormality affecting this signaling axis can result in thrombocytosis or thrombocytopenia. Thrombocytosis can be due to g...
متن کاملTwo patterns of thrombopoietin signaling suggest no coupling between platelet production and thrombopoietin reactivity in thrombocytopenia-absent radii syndrome.
BACKGROUND Thrombocytopenia with absent radii syndrome is defined by bilateral radius aplasia and thrombocytopenia. Due to impaired thrombopoietin signaling there are only few bone marrow megakaryocytes and these are immature; the resulting platelet production defect improves somewhat over time. A microdeletion on chromosome 1q21 is present in all patients but is not sufficient to form thromboc...
متن کاملIdentification of an oncogenic form of the thrombopoietin receptor MPL using retrovirus-mediated gene transfer.
Thrombopoietin and its receptor (MPL) are important regulators of megakaryopoiesis. We have identified an activating mutation of MPL using a combination of a retrovirus-mediated gene transfer and polymerase chain reaction-driven random mutagenesis. This point mutation causes a single amino acid substitution from Ser498 to Asn498 in the transmembrane region and abrogates factor-dependency of all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 125 7 شماره
صفحات -
تاریخ انتشار 2015